POINT DERIVATIONS ON BANACH ALGEBRAS OF α-LIPSCHITZ VECTOR-VALUED OPERATORS

author

  • Abbasali Shokri Department of Mathematics, Ahar Branch, Islamic Azad University- Ahar-Iran
Abstract:

The Lipschitz function algebras were first defined in the 1960s by some mathematicians, including Schubert. Initially, the Lipschitz real-value and complex-value functions are defined and quantitative properties of these algebras are investigated. Over time these algebras have been studied and generalized by many mathematicians such as Cao, Zhang, Xu, Weaver, and others. Let  be a non-empty compact metric space and  be a unital commutative Banach space over the scalar field , and . In this paper, we first introduce the Banach algebras of vector-valued (B-valued) -Lipschitz operators on ,  and , then we study the point derivations on them. In the main results of this paper, we prove that all continuous point derivatives on  are zero, and at any non-isolated point X, there is a non-zero continuous point derivation on .

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Some Properties of Vector-valued Lipschitz Algebras

‎ Let $(X,d)$ be a metric space and $Jsubseteq (0,infty)$ be a nonempty set. We study the structure of the arbitrary intersection of vector-valued Lipschitz algebras, and define a special Banach subalgebra of $cap{Lip_gamma (X,E):gammain J}$, where $E$ is a Banach algebra, denoted by $ILip_J (X,E)$. Mainly, we investigate $C-$character amenability of $ILip_J (X,E)$.

full text

On the character space of vector-valued Lipschitz algebras

We show that the character space of the vector-valued Lipschitz algebra $Lip^{alpha}(X, E)$ of order $alpha$ is homeomorphic to the cartesian product $Xtimes M_E$ in the product topology, where $X$ is a compact metric space and $E$ is a unital commutative Banach algebra. We also characterize the form of each character on $Lip^{alpha}(X, E)$. By appealing to the injective tensor product, we the...

full text

On the character space of Banach vector-valued function algebras

‎Given a compact space $X$ and a commutative Banach algebra‎ ‎$A$‎, ‎the character spaces of $A$-valued function algebras on $X$ are‎ ‎investigated‎. ‎The class of natural $A$-valued function algebras‎, ‎those whose characters can be described by means of characters of $A$ and‎ ‎point evaluation homomorphisms‎, ‎is introduced and studied‎. ‎For an‎ ‎admissible Banach $A$-valued function algebra...

full text

Linear operators of Banach spaces with range in Lipschitz algebras

In this paper, a complete description concerning linear operators of Banach spaces with range in Lipschitz algebras $lip_al(X)$ is provided. Necessary and sufficient conditions are established to ensure boundedness and (weak) compactness of these operators. Finally, a lower bound for the essential norm of such operators is obtained.

full text

Derivations on Banach Algebras

The separating space of a derivation onA is a separating ideal [2, Chapter 5]; it also satisfies the same property for the left products. The following assertions are of the most famous conjectures about derivations on Banach algebras: (C1) every derivation on a Banach algebra has a nilpotent separating ideal; (C2) every derivation on a semiprime Banach algebra is continuous; (C3) every derivat...

full text

Compact composition operators on real Banach spaces of complex-valued bounded Lipschitz functions

We characterize compact composition operators on real Banach spaces of complex-valued bounded Lipschitz functions on metric spaces, not necessarily compact, with Lipschitz involutions and determine their spectra.

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 6  issue 24

pages  39- 44

publication date 2020-05-21

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023